Expressing Object-Oriented Concepts in Fortran90

Viktor K. Decyk

Department of Physics and Astronomy
University of California, Los Angeles
Los Angeles, CA 90095-1547
&

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: decyk@physics.ucla.edu

Charles D. Norton

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: nortonc@olympic.jpl.nasa.gov

Boleslaw K. Szymanski

Department of Computer Science
and
Scientific Computation Research Center (SCOREC)
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

email: szymansk@cs.rpi.edu

Abstract
Fortran90 is a modern, powerful language with features that support important new
programming concepts, including those used in object-oriented programming. This
paper briefly summarizes how to express the concepts of data encapsulation,
function overloading, classes, objects, inheritance, and dynamic dispatching.

1



l. Introduction

Fortran, still the most widely used scientific programming language, has evolved
every 10 years or so to incorporate the most recent, proven, ideas which have
emerged from computer science and software engineering. The latest version,
Fortran90, has incorporated a great many new ideas, including some of those used in
object-oriented programming, but scientific programmers generally are aware of only
one of them: array syntax. In this paper, we will summarize the concepts of data
encapsulation, function overloading, classes and objects, inheritance, and dynamic
dispatching and explain how they can be expressed in Fortran90. Specific details can
be found in our other publications [1-3].

Since Fortran90 is backward compatible with Fortran77, it is possible to
incorporate these new ideas into old programs in an incremental fashion, enabling the
scientist to continue his or her scientific activities. Some of these ideas are useful for
the programs typically written by individual authors now. The usefulness of other ideas
only becomes apparent for more ambitious programs written by multiple authors.
These are programs that might never have been written in Fortran77 because the
complexity involved would have been unmanageable. These new ideas enable more
productive program development, encourage software collaboration and allow the
scientist to use the same abstract concepts in a program that have been used so
successfully in scientific theory. Scientific productivity will then improve. Additionally,
there is a migration path to parallel computers, since High Performance Fortran (HPF)
is also based on Fortran90.

Il. Data Encapsulation, Information Hiding, and Function Overloading

A fundamental idea behind object-oriented programming is that users of one
program unit should know as little as possible about what is inside other program units
that they use. This idea is called information hiding. Not only does it make program
units easier to use, but it allows internal details of program units to change without
impacting the users. A related idea is data encapsulation, which means that data
which is needed in only one program unit will not be accessible and cannot be
changed by another. This leads to enhanced program safety. Although such
techniques were possible in Fortran77, they were error prone. Fortran90 has features
to make it much easier and safer. As an example, consider a call to an FFT library
routine in Fortran77:

subroutine fftlr(f,t,isign,mixup, sct, indx,nx,nxh)
integer isign, indx, nx, nxh, mixup (nxh)
real f (nx)
complex sct (nxh), t(nxh)
c rest of procedure goes here
return
end



Here £ is the array to be transformed (and the output), t is a temporary work array,
mixup is a bit-reverse table, sct is a sine/cosine table, indx is the power of 2 defining
the length of the transform, and nx (>=2**indx) is the size of the £ array, while nxh
(=nx/2) is the size of the remaining arrays. The variable isign determines the
direction of the transform.

The goal of data encapsulation is make the FFT call look like:

call fftlr(f,isign)

where all the auxiliary arrays and constants which are needed only by the FFT are
hidden inside the FFT, and the rest of the program does not have to be concerned
about them. Such encapsulation and information hiding can be achieved by means of
automatic, allocatable, and assumed-shape arrays. Since t is a scratch array needed
only during the call, it is best treated as an automatic array. The tables needed by the
FFT should remain between calls, so they are best treated as saved, allocatable
arrays. The input array f is best treated as an assumed-shape array because such
arrays know their own size.

With such encapsulation, the author of the FFT can make changes to the algorithm
or the internal data structure and the user of the subroutine would not be impacted.
Another benefit is that one can hide old Fortran77 procedures behind a modern
Fortran90 interface. For example, the Fortran90 FFT can actually call the original
Fortran77 FFT inside. Then, the original FFT can be replaced (perhaps with a more
optimized version) without the users of the FFT having to modify anything. With these
language features, it is easier to develop software collaboratively, since individual
authors responsible for individual procedures can make internal changes without
affecting the other collaborators.

One powerful new feature of Fortran90 is the ability to check whether the number of
types of arguments to called procedures are consistent with their declarations. This
means that if one accidentally called the FFT procedure as follows:

call fftlr(f)

the compiler would complain that the argument isign was missing. Argument
checking is automatically provided for functions defined in a new program unit called a
module.

This ability to check arguments allows function overloading, which refers to using
the same function name or operator symbol but performing different operations based
on argument type. In Fortran77, this has always been available for intrinsic
operations. For example, the ‘/’ symbol gives different results depending on whether
its arguments are real, integer, or complex. Fortran90 extends this ability to user
defined functions and operators by means of the generic function mechanism. Note
that function overloading is done at compile time and does not incur any performance
penalty during execution.

For example, if we have another FFT procedure called £ft2r which works on 2
dimensional data:

3



subroutine fft2r(f,isign)
real, dimension(:,:), intent(inout) :: f
integer, intent(in) :: isign

then both FFT procedures can be given the same name f£ft (which is now
overloaded) because the arguments £ are of different types: in one case fis a 1d
array, and in the other it is a 2d array. If the both procedures are in one module, this
overloading is done with the following declaration:

interface fft
module procedure fftlr, fft2r
end interface

lil. Derived Types, Classes, and Objects

Fortran90 allows users to define their own data types, built from intrinsic types such
as real and integer, as well as other previously defined types. These are known as
abstract data types or derived types. Derived types are structures or records (common
in other languages) which can store items of possibly different types together. For
example, one can define a private complex type to consist of two real components
as follows:

type private complex
real :: real, imaginary
end type private complex

To create variables a, b, and c of this new type, one makes the following declaration:
type (private complex) :: a, b, ¢

The components of this new type are accessed with the ‘¢’ symbol, and one can
assign values as follows:

a%real = 1.0
a%imaginary = 2.0

If we write a procedure for multiplication of the private complex types, it makes
sense to place the new derived type together with the procedures which operate on
that type into the same module, as follows:

module private complex module
! define private complex type
type private_ complex
private
real :: real, imaginary
end type private complex



contains

function pc_mult (a,b) result (c)
! multiply private complex variables

type (private complex), intent(in) :: a, b
type (private complex) :: C
c%real = a%real*b%real - a%imaginary*b%$imaginary
c%imaginary = a%real*b%imaginary + a%$imaginary*b%real
end function pc _mult

end module private complex module

What we have created here is a simple class. It consists of a single derived type
definition (whose components are the class data members) along with the procedures
which operate only on that type (called the class member functions or methods). The
actual variable of type private complex is called the object. Multiplication of two
objects is performed by calling the procedure:

¢ = pc_mult (a,b)

In this example we have made the components of private complex type PRIVATE
so that they are directly accessible only to the class member functions. In other words,
the object a is available in the main program, but the components a%real and
a%imaginary are not. Then any changes made to the internal representation of the
private complex type (for example, switching to polar coordinates from Cartesian)
would be confined to this module and would not impact program units in other
modules (assuming the public subroutine arguments remain the same).

The example of private complex is perhaps academic, since the complex type
already exists in Fortran. However, similar techniques can be used to create more
powerful and interesting classes to represent others kinds of algebras and thereby
program at the same high level with which one can do mathematics, with all the power
and safety such abstractions give.

IV. Inheritance

inheritance, in the most general sense, can be defined as the ability to construct
more complex (derived) classes from simpler (base) classes in a hierarchical fashion.
Generally, the base class contains the properties (meaning data and procedures)
which are common to a group of derived classes. Each derived class can then modify
or extend each of these for its own needs if necessary.

As an example, suppose we want to extend the private complex class so that it
keeps track of the last operation performed. Such a feature could be useful in
debugging, for example. Except for the additional feature of monitoring operations, we
would like this extended class to behave exactly like the private complex class. We
can accomplish this by creating a new class called the monitor complex class that
“uses” the types and procedures defined in the private complex class. Inthis
new class, we define a new derived type, as follows:

5



type monitor_ complex
type (prlvate complex) :: pcC
character*8 :: last op

end type monito:_complex

which contains one instance of a private complex type plus an additional character
component to be used for monitoring. Then we extend all the procedures defined in
the private complex class so that they work in the monitor_ complex class. For
multiplication, we create a mc_mult procedure which calls pc_mult on the

private complex part of monitor complex as follows:

module monitor_ complex class
use private complex class

type monitor complex

private
type (private complex) :: pcC
character*8 :: last_op
end type monitor complex
contains
function mc mult(a,b) result (c)
type (monitor complex), intent(in) :: a, b
type (monitor complex) it C

c%pc = pC 1 mult (a%pc, b%pc)
c%last op = 'MULTIPLY'
end function mc_mult

end module monitor complex class

If we overload the ‘*’ operator to refer to pc_mult and mc_mult with the INTERFACE
statement:

interface operator (*)
module procedure pc mult, mc mult
end interface

then the multiplication of each type looks the same

type (private complex) :: a, b, c
type (monitor complex) :: X, y, 2z
c = a*b ! multiplication with private complex types
z = X*y ! multiplication with monitor complex types

but multiplication in the derived monitor complex behaves differently than
multiplication in the base class private complex because it stores the last_op
component.

V. Dynamic Dispatching



The purpose of dynamic dispatching (or run-time polymorphism) is to allow one to
write generic or abstract procedures which work on all classes in an inheritance
hierarchy, yet produce results that depend on which object was actually used at run-
time. To illustrate this, suppose we had written a subroutine called work which made
use of the functions in the private complex class hierarchy to square a number and
then print out the result:

subroutine work(a)

type (private complex), intent (inout) :: a
a = a*a

call display(a,’work:’)

end subroutine work

where some appropriate display procedure had been defined. Since object a has
been declared of type private complex, this work subroutine will not function if a
monitor complex type was passed, even though multiplication and display are
defined for that type. One could, of course, write another work procedure which is
identical to this one except that object a is declared of type monitor complex. This
can be tedious and error prone, however. Dynamic dispatching allows one to write a
single procedure that would work with both types. In object-oriented languages, such
capabilities are normally available automatically. In Fortran90, one must write a
special subtype class to provide this functionality. Details of how this class is
constructed are beyond the scope of this article, but the interested reader can refer to
our other publications.

References:

[1] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “Introduction to Object-Oriented
Concepts using Fortran90,” submitted for publication.

[2] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to Express C++ Concepts in
Fortran90,” submitted for publication.

[3] See also the web site: http://www.cs.rpi.edu/~szymansk/00f90.html

Acknowledgments:

The research of Viktor K. Decyk was carried out in part at UCLA and was sponsored
by USDOE and NSF. It was also carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration. The research of Charles D. Norton was supported by a
National Research Council Associateship, and that of Boleslaw K. Szymanski was
sponsored under grants CCR-9216053 and CCR-9527151.



